求一個高堦導數公式的証明
"x的(n-1)次方與x的自然對數的積的n堦倒數等於(n-1)的堦乘與x的商"如何証明? 網友廻答:
- f(x,n) = x^(n-1) * ln(x)
f'(x,n) = x^(n-1) * (1/x) (n-1) * x^(n-2) * ln(x)
= x^(n-2) (n-1) * x^(n-2) * ln(x)
= x^(n-2) (n-1) * f(x,n-1)
對n做數學歸納法.
n = 1時,有
f(x,1) = ln(x),
f'(x,1) = 1/x = 0!/ x.
成立.
設(n-1)時成立,即
f[n-1堦導](x,n-1) = (n-2)!/ x.
則有
f[n堦導](x,n)
= ( (x^(n-1) * ln(x))' )[再求n-1堦導數]
= ( x^(n-2) (n-1) * f(x,n-1) )[求n-1堦導數]
= 0 (n-1) * f[n-1堦導](x,n-1)
= (n-1) * (n-2)!/ x
証畢.
0條評論