在三角形ABC中,內角A,B,C的對邊a,b,c,已知cosA=2/3,sinB=根號5cosC,(1)求tanC的值.(2)若a=根號2,求三角形ABC的麪積. 網友廻答:
- (1)
cosA=2/3,sinA=√5/3,tanA=√5/2
sinB=sin(π-A-C)=sin(A C)=sinAcosC cosAsinC=√5/3cosC 2/3sinC
由已知sinB=√5cosC
所以√5cosC=√5/3cosC 2/3sinC
等號兩邊同時除cosC得
√5=√5/3 2/3tanC
tanC=√5
(2)過B作AC垂線,垂足爲D
tanC=√5,sinC=√5/√6, cosC=1/√6
則CD=BC*cosC=1/√3,BD=BC*sinC=√5/√3
AD=BD/tanA=2/√3
AC=AD CD=√3
三角形ABC的麪積=1/2*AC*BD=1/2*√3*√5/√3=√5/2
網友廻答:
- 1∵cosA=2/3,∴sinA=√(1-cos²A)=√5/3∵sinB=√5cosC sinB=sin(A C)=sinAcosC cosAsinC∴sinAcosC cosAsinC=√5cosC ∴√5/3cosC 2/3sinC=√5cosC∴ sinC=√5cosC ,∴tanC=√52.若a=√2,∵ sinA=√5/3∴2R=a/s...
0條評論